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The reduction of greenhouse gas emissions has become a global priority, with permanent magnets
playing a key role in the electrification of transport and renewable energy systems. Growing demand
of high-performance NdFeB-type magnets  necessitate the development of  alternatives with lower
rare-earth content while maintaining the magnets' high coercivity and energy density product. 
We follow two strategies  on different  length scales.  At  the nanoscale,  our  focus  is  on identifying
optimal spatial compositions of magnetically hard and soft  phases, aiming to maximise the energy
density product BHmax  while  reducing  the reliance on rare-earth-containing hard phases.[1] On the
microscale, we target enhancements in coercivity through tailoring of microstructure and chemical
composition. Machine learning serves as a vital tool in advancing both approaches.
To evaluate BHmax of different spatial phase distributions, we segment a cube into smaller patches of
either  magnetically  hard  Nd2Fe14B or  soft Fe65Co35 material,  and  micromagnetically  compute  their
demagnetization  curves.  An  optimization  framework,  incorporating  an  adapted  binary  search
algorithm [2], was developed to propose new promising design canditates. To speed up the optimizer,
a  convolutional  neural  network  is  used  as  a  surrogate  model.  The  network  was  trained  on  the
micromagnetic results to predict BHmax from the spatial arrangement of the patches.
To investigate microstructure on the microscale, a reduced order model for hard magnetic materials
[3]  was  developed,  significantly  extending  the length  scale  limits  of  micromagnetic computations.
Using this model, we calculate the coercive field of magnetic cubes with edge lengths of up to 70µm
and varying microstructures. We exploit the fact that granular structures can be well described as
graphs and train a graph neural network on the simulation results to predict the coercive field based
on  various  microstructural  properties.  This  model  can  be  used  to  find  beneficial  microstructural
properties by inverse design.

Figure 1. Left: Hard/soft magnetic spatial distributions proposed by a trained convolutional neural network model and 
evaluated by micromagnetic simulations. The design with the highest energy density product so far (b) is shown in the 
corner. Right: Computed versus predicted coercive field of a granular magnetic cubes of various sizes and microstructure. A 
graph neural network was tuned to achieve a high prediction accuracy with R2=96%.
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