Atomic altermagnetism Rodrigo Jaeschke-Ubiergo¹, Venkata-Krishna Bharadwaj¹, Ricardo Zarzuela¹, Warlley Campos², Nikolaos Biniskos³, Rafael M. Fernandes^{4,5}, Tomas Jungwirth^{6,7}, Jairo Sinova¹, and Libor Šmeikal^{2,7,1} ¹Institut für Physik, Johannes Gutenberg Universität Mainz, Germany ²Max Planck Institute for the Physics of Complex Systems, Dresden, Germany ³Charles University, Prague, Czech Republic ⁴Department of Physics, University of Illinois Urbana-Champaign, USA ⁵AJL Institute for Condensed Matter Theory, UIUC, USA ⁶Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic ⁷School of Physics and Astronomy, University of Nottingham, UK Altermagnetism has recently been verified experimentally by photoemission mapping of the spin order in MnTe and CrSb [1], which feature two anisotropic sublattices with antiparallel magnetic dipole moments. In this talk, I will introduce the concept of atomic altermagnetism[2]—a form of ferroic higher-order partial waves of the atomic spin density. Using spin-symmetry analysis and partial-wave decomposition of first-principles spin densities, we explicitly demonstrate such non-dipolar spin order in MnTe, KV₂Se₂O, and Ba₂CaOsO₆. In MnTe we identify a ferroically ordered g-wave form factor around the Mn site. In KV₂Se₂O (and related Lieb-lattice compounds), we show a ferroically ordered d-wave spin density coexisting with antiferroic dipoles on V sites, while O sites display a pure d-wave spin density without any dipole. In the Mott insulator Ba₂CaOsO₆, we uncover a striking case of pure atomic altermagnetism, entirely absent of dipolar sublattice order. These results highlight that altermagnetic order can exist without a Néel vector of staggered dipole moments, thus distinguishing it fundamentally from conventional collinear antiferromagnetism. Finally, I will show that KV₂Se₂O and Ba₂CaOsO₆ are predicted to host giant spin-splitter angles of up to 42° and 26°, respectively—demonstrating that strong altermagnetic responses can emerge without requiring the staggered Néel order of local dipole moments. Figure 1. Partial-wave expansion of the spin density from non-relativistic DFT for CrSb, V₂Te₂O, and Ba₂CaOsO₆. ## References - [1] L. Šmejkal, J. Sinova, and T. Jungwirth, "Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry," *Physical Review X*, vol. 12, p. 031042, sep 2022. - [2] R. Jaeschke-Ubiergo, V.-K. Bharadwaj, W. Campos, R. Zarzuela, N. Biniskos, R. M. Fernandes, T. Jungwirth, J. Sinova, and L. Šmejkal, "Atomic altermagnetism," arXiv preprint arXiv:2503.10797, 2025.